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independently and only fails once. Scholz de
rived the theory for volumetric strains but he 
commented [Scholz, 1968, p. 3299J, 'v can also 
be considered to be the increment of axial or 

. lateral strain.' 
If P(F.), the transitional probability of frac

ture at it stress F., does not \'ary with time, the 
probability P that an element will fracture in 
the next · time interval cit after a time t under 
stress F. is given by 

P = P(F.) exp [-P(F.)t] dt (2) 

and this leads to 

P(F.) = l/t, (3) 

Subst.ituting equation 3 in equation 1 gives 

P(F.) = a exp [-(E/ K.'1') - b(Fm - Fa)] (4) 

. If N(Ji'., t) is the number of elements under 
stress Ji'. at time t, then the probability of one 
of these elements failing in the subsequent time 
interval cit is 

f(F'.) = N(P., t)P(F.) dt 

d[N(F., t)]/dt = N(Fa, t)P(F.) 

The axial creep rate is then 

l
Pft 

it = v 0 N(Fa, t)P(P.) dF. 

(5) 

(6) 

(7) 

Integration of equation 6 from zero to time t 
gives 

N(F., t) = N(P., 0) exp [-P(F.)t] (8) 

Differentiation of equation 4 leads to 

d(P(F.» = - b P(F.) dF. (9) 

Assuming that the initial distribution, N (F., 
0) is uniform in the inten·al zero to F ... , and is 
zero outside it, then N(Fa, 0) = N. Equation 7 
can then be written 

e, = vN f'· P(F.} exp [-P(F.)t] dF. 
(10) 

= (vN/b) iP

• exp [-P(F.}t d(P(F.»] 

The integration of equation 10 leads to 

i , = vN/bt . (11) 

Scholz's contribution, based 011 the assump
tion represented by equation 1, comprises two 
st,'ltements: 

I, = c exp [b(Fn. - F.}] (12) 

I, = d exp (E/ KT) (13) 

Equation 12 described the static fatigue of the 
elements at constant temperature j equation 1~ 
described their static fatigue at constant stre~s. 
Scholz suggested that equation 12 could be 
verified by experiments on the static fatigue 
of homogeneous specimens of silicates such as 
glass. 

CRITICISM Ol!' SCHOLZ'S THEORY 

Scholz, then, has assumed that a creep speci
men is composed of a number of elements of the 
same dimensions and with similar physical and 
chemical properties (that is, they all obey the 
same law of statc fatigue). The stress distribu
tion ill each element is assumed to be uniform, 
and the elemenfs are each st.ressed to different 
stresses in the range from zero to the instan
taneous compressive-strength of an element. 
Under compression of the specimen, tensile 
stresses are assumed to be absent. 

There are immediate difficulties with these 
assumptions. One of these is the definition of 
the instantaneous compressi\·e-strength of an 
clement. Fracture of bodies under 'compression 
is invariably attribu.ted to tensile stresses at 
cracks and other stress concentrations within 
the body. Scholz [1968, p. 3298J was clear, how
ever, that there are no tensile stresses within 
the specimen; it is tbei·efore difficult to envisage 
the occurrence of a fracture. 

Notice, also, that the stress distribution 
within the specimen is specialized. If the stress 
distribution within the elements is unifonn, 
then their boundaries will be free of shearing 
stresses, for instance. Scholz has not discussed 
what arrangement of the elements would pro
duce this stress distribution. However, if the 
elements are to have perfectly smooth margins 
to eliminate shearing stresses, then the specimen 
may not cohere. 

Scholz's theory ca·11 also be criticized for the 
form of equation 12. Taking logarithms of equa
tion 12, 

log I, (14) 
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